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It is well known that structural defects lead to a concentration of  stresses, thereby lowering the strength of 
fiberglass. Since the position of  these defects in actual specimens is to a large extent  random, the strength 
of these samples fluctuates, i.e., there is a distribution associated with strength tests. This distribution, in 
contrast to the stress field inside the fiberglass, can easily be determined experimentally. 

In this article, we present examples of  the calculation of  stress concentration caused by different systems of 
fiber ruptures and, based on the results obtained, we calculate the spread in the strength of  fiberglass, in which 
the starting system of  defects has some regularity, resulting from the appearance of  a new defect at a random 
point. It is assumed that the fiberglass consists of alternating fibers and bonding layers, and in addition, that 
the fibers function only by stretching and compressing, while the bonding agent functions only in shear. 

1. Concentration of Normal Stresses for Various Defect Distributions. Let us assume that the specimen is stretched 
to infinity by a constant stress e and that  the stress at a point  at which the fiber is ruptured equals zero. For  convenience, 
we will subtract out of  the solution the stress corresponding to uniform tension. Then, for the remaining part,  there are 
~o stresses at infinity and a stress - o  at points at which a fiber is ruptured. 

If there is a single rupture of a fiber, labelled by k, at an ordinate y = Yk (Y is measured along a fiber), then the 
distribution of stress in the j-th fiber is given by the formula [1] 

(~ ~ ( - - 2 ~  ~ ) sin-~- cos ( ] - -  k) sds. (1.1) ~ _ : ( ~ I ) = - - T  exp I ~ l - - ~ l ~ l s i n 7  
o 

Here ~1 = Y,/I'~B'h is the dimensionless coordinate along a fiber; h and H are the dimensions of a fiber and of the bonding 
agent layer in a direction perpendicular to the fiber; ~2 = G / E ,  where E and G are Young's and shear modulus of the fiber 
and the bonding agent, respectively. In particular,  

cr 

~; (qh) = 4 (k - j): - l ' (~• (~h) = (J/3, 

i.e., due to proximity to a single rupture, a fiber is subjected to a stress that is 1/3 greater than normal (taking into account 
the tension at infinity). 

If  there are several fiber ruptures at points r/~ (m is the number of  ruptured fiber, n is the number of  the rupture 
on the m-th fiber), then in order to calculate the stress field we can use the superposition principle. It is evident that 

~] ~ , e ' ~ j  (~l), where c~ is a constant and oj(r/) is obtained from (1.1), satisfies the equation of  equilibrium for the fiber- 

glass. The values of c n are chosen from the conditions of equality of the stress - ~  at rupture points. From here, we ob- 
m 

tain a system of  linear algebraic equations for finding c n 
m 

~,  ,~ l f (--2I~ " 1" '  " s ' . ,~ (1.2) _.. _ j  crn -'-7 exp ] l l , - ,~ - -  l~u [ s m  T } s l n - y  cos (m - a) s d s  = 1. 

The pairs of indices m, n and/~, u pass through the rupture points. 

The equations for equilibrium of fiberglass (see [ 1 ]) are differential-difference analogs of the Laplace equation. For  
this reason, it may be shown that the maximum principle is valid for them, i.e., the stresses cannot attain minimum and 
maximum values outside the neighborhood of  the fiber ruptures (the coordinates of points with extremal stresses are the 
same as the rupture points, while the fiber m~mbers differ by unity).  
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Let us examine several particular cases such that due to symmetry  in  the posit ioning of the ruptures, all rupture  
points are equivalent, and for this reason, all c ~ in (1.2) are identical and equal c. Then,  in each case in (1.2), only a 

lrt 

single equat ion remains. 

A. Periodic System of Ruptures,  Posit ioned along a Straight Line Perpendicular to the Fibers. In this case 
~]~ = ~1~ = O,m, Ix = . . . , - -2p ,  --p, O, p, 2p, and p is some positive integer, p > 1. The system (1.2) takes the form 

c ~ @ I s i n  ' cosp(m-- t .Osds '=l  

�9 (p is an integer), from where, 

.'%2 

- -  == S i l l  8 
r , ~ t  . 

r ~ - - o o  0 

cos 2prsds = ~ ctg 2t--7" 

In deriving the last relation, we used the formula [2] 

,• e,e 

= _ _  ' s__ -7 -  ) ..., cos kps 2~ ~ 61 2.'~],~ ', (1.3) 

(6 is the Dirac function).  

(r.~ (0) 
O 

Thus, the stress in the fibers along the rupture  line equals 
~./2 

- -  sm sin �9 :. t g - ~  - -  ~ - " I L  2p 2,,3 3 
m ~ - - o o  0 

In a fiber neighboring a ruptured fiber (j = 1), we have 

@ / s  ' 3.  a 1 (01 = sin m . 
a 2 / )  

(1.4) 

For  p = 2 (every other  fiber is ruptured),  

aio(0) __ (2, s in n (214 § t) sin ~ (2i4-- t) ~-1) 
t on unruptured fibers 

= - -  i on ruptured fibers . 

Therefore, the unrup tu red  fibers are subjected to a stress that is twice the normal  value. This result can also be obtained 
wi thout  using (1.4) from the condi t ions  of  equil ibrium and the symmetry  of the problem. 

Table 1 shows the values o f  o 1 (0)/a,  computed  from formula (1.4) for several values of  p. Thus, for p > / 6 ,  the 
stress concent ra t ion  created by the periodic system of  defects near a defect is practically the same as in the presence of  a 

single rupture.  

B. Periodic System of Ruptures  Situated along a Fiber.  In this case, in (1.2), m = ,a = 0, a l~ = nL, ~1~ = vL, 
n and v are integers and 

l_.=c ~ y e x p ( - - 2 ~ L l n - - v l s i n s ) s i n s d s = ! ,  t + 2 , , = l e x p ( - - 2 ~ •  
~ = - - o o  0 

• Ln sin s) sin sds = cth  (~L sin s) sin sds. 
0 

The stress in the fibers along the rupture  line equals 

~t '2 

cth (15L sin s) sin s cos 2]sds 
o~ (0) ~ (1.5) 

~ cth (~L sin s) sin sds 
0 

In the l imiting case ~L << 1, we use formula (1.411.8) from [3]: 

x x 3 
cth x = I _~ q- 0 (x 5) for x --~ 0 , 

x 3 45 
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TABLE 1 

p e,(O)/e 

2 1 
3 0,50 
4 0,41 
6 0,37 

0,33 

and after computing all required integrals we obtain 

(~.i (0) ._ (~L)" 81. ~ -- 0.066 (~L) ~ (t3~.i - -  0.258~) -+" 0 (~L ~) 
(Y t2 -i- 2 ([~L) ~ - -  0.t (~L) 4 

for ~L ~ 0 (6ij is the Kronecker symbol). In particular, 

a 1 (01 
o ~ ([~L)~ 

1 -- 0.066 (~L): 
t2 -i- 2 (15L) 2 -- OA (~L) ~'" 

The more often the defects appear in the structure, the lower the stress concentration and, for flL ~ 0, it completely 
vanishes. 

C. Rectangular Grid of Defects. Let the spacing of  the grid equal L along a fiber and a positive integer p (p > /2)  
in a direction perpendicular to the fibers. In this case, in (1.2) the following values must be used: 

1/ V T I ~ = n L ,  ~l,u=~L, m, tt . . . . .  - - 2 p , - - p ,  0, p, 2p . . . .  , 

n , , 0 =  ., 3. ~ - - t , 0 , 1 . 2 , 3 .  '~ �9 . - -  - - ~ r  , , " ' ' ,  Cm-~'C" 

Then, using (1.3), 'we obtain 

,~2 ~ cos2kps 
0 h . =  - -  oo 

, ~ "2  
[ p ' - 2 ]  ! ~ k  ' I  �9 . ' x k  I " .  

6 Z otl,. ...T,p t --  ) 
/ '-,= 1 

( [ p / 2 ]  is the integer part of  a number);  

b/~-] ' a~" . ~- 2~., ( t ) (1.6) 
aja(O) c ~o Z cth [13L sin --~--, sm - - 7  cos p i - -  -37). 6h,,/2 �9 

h = l  

Let the defects be posit ioned as densely as possible in a direction perpendicular to the fibers (p = 2). Then the stress in 
the unruptured fibers, given by (1.6), equals a, as it should be. For  p = 3, we have, correspondingly, 0/2. These results 
can be obtained from the symmetry and conditions of equilibrium without solving the equations. For  p -+ ~ ,  the sums 
in (1.6) become integrals and in the limit we obtain formula (1.5). For  fiL -~ ~ ,  we obtain the formulas for a single series 
of  defects from example (A). I f  in (1.6) t3L is taken to the limit zero, then, replacing cth o~ by 1/or and summing the 
cosines, we obtain that the stresses are uniformly distributed between the fibers 

~(O)la = t/(p - -  t).  

D. Two Defects. In (1.2), we substitute m = 0 ,  ~10=0,  ~t = p ,  % = L ,  c o = c l = c ,  

1 ~ [t + exp (- -  2J3L sin s) cos 2psi sin sds. 
c 

0 

The stress at an arbitrary point  of  the j-tb fiber is given by the formula 

S aj ('1) c [exp( - -2~[~] l s ins )cos2 j s :+exp( - -2 fS fL- -~] l s ins )eos2(p- - ] ) s ] s insds .  (1.7) 
U 

0 
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If  two defects are located next to each other (p = 1, L = 0), then cr_l(0)l~ = cr~(0)l~ = 315. The riskiest positioning of  the 
defects (p = 2, L = 0) leads to a concentration ~(0)/cr = 5/7. 

2. Spread in the Magnitude of the Strength of Fiberglass. Using the formulas from Part 1, let us examine the prob- 
ability that  any particular value of  strength will be observed in tension tests on fiberglass. Let us assume that  the speci- 
men initially has some number of  defects (fiber ruptures). Let a fiber have a rupture strength or.. Further,  let ~r o be the 
smallest tensile stress at infinity for which the Stress at some point  in one of  the fibers attains the threshold strength 0 . .  
Then, we will identify the strength of  a specimen with a given system of  defects by the ratio Cro/Cr.. It is evident that the 
strength determined in this manner does not  depend on or,, but is determined only by the geometry of  the distribution of  
defects. 

Let us now consider the following series of tests. Let us assume that an arbitrarily positioned defect is added to the 
initial system of  defects and let us calculate the strength of  the specimen in this case. We force the additional defect to 
pass over the entire specimen. Each position of the defect will correspond to its own strength value. Thus, we will obtain 
a distribution of the number of tests with respect t o  the magnitude of  the strength of  the specimen. 

Let us assume that the starting system of  defects forms a rectangular grid (example C). According to the maximum 
principle, the strength of  the specimen in this case is determined by formula (1.6) with j = 1. Now, let a new defect appear 
at an arbitrary point in the elementary cell of  the initial grid. In order to calculate precisely the strength of  the specimen in 
this case, it is necessary to solve the system (1.2), in which now, for such a configuration of  defects there is no symmetry 
and the number of different c n in general case is infinite. In this form, this system cannot be solved, and for this reason, 
in what follows, in calculating the strength of a specimen, only the interaction of a new defect with one or four of  the 
nearest defects in the starting grid will be taken into account (1.7), and in the second, from a similar formula for five 
defects, which can be obtained from (1.2), but is not written out here due to its cumbersomeness. It is clear that due to 
the symmetry it is enough to force the new defect to pass only one fourth of  an elementary cell in the starting grid. From 
the results of part one, it follows that  the error introduced into the distribution by substituting the entire grid by a single 
or several nearest defects decreases with increasing grid spacing. 

Figure 1 illustrates the results of the tests assuming that a newly formed defect interacts only with the four nearest 
ruptures in the starting grid. The abscissa axis shows the strength of the specimen and the ordinate axis shows the fraction 
of the tests in which a Nven strength level was observed. The area under the curves equals unity. The vertical columns 
include graphs obtained with the same grid spacing in a direction perpendicular to the fibers p, but for different values of  
the grid spacing along the fibers L, while the horizontal rows show graphs for constant values of L. We note immediately 
that in taking into account only the interaction of  the new defect with a single nearest defect in the starting grid the results 
coincide, aside from small quantitative differences, with those presented in Fig. 1. As follows from (1 . I )  and (1.2), the 
stress around a rupture rapidly decreases with increasing distance from the rupture, and for this reason, two ruptures 
posit ioned at a large distance have a weak effect on each other and the strength of  a specimen with such defects is close to 
3/4 (strength of the specimen with a single defect). Since an increasing percentage of new defects is situated fairly far away 
from all the initial defects as the spacing of the starting grid increases, an increasing percentage of  tests must give strength 
values around 3/4. Therefore, a peak that increases with increasing spacing p and L is observed in the graphs. The second 
peak observed for small values of  L with high values of strength corresponds to the appearance of  an initial rupture in an 
already ruptured fiber. 

It would be interesting to determine how further rupture occurs in the sample, i.e., will maximum stresses be obtained 
in the vicinity of the new defect or in the vicinity of one of  the initial defects? Such a test was carried out for the case 
when the new defect interacts with four of the initial defects. It turned out that if  the new defect is situated on one of  
the initial unruptured fibers, but not  too far away from one of the defects in the grid, then further rupture occurs in the 
vicinity of  the new defect; if, on the other hand, the new defect is situated far away from all the initial defects or on an 
already ruptured fiber, then further rupturing occurs next to one of the initial defects. 

In order to refine the model used, we can at tempt to take into account in some way the random (and not  regular, 
as in the computations) nature of the distribution of the initial defects. This can be done, for example, by averaging the 
results of tests according to several of the initial systems of defects with different parameters p and L. However, it is clear 
that such averaging will not give a qualitatively new strength distribution. I t  is natural to assume that the probabili ty for 
the appearance of  an additional defect at a given point depends on the stress created at this point by the initial system of 
defects. A calculation was carried out assuming that the probabili ty for the appearance of  a defect is proportional to the 
k-th power of the initial stress (0 ~< k ~< 5, p = 8, L -- 8, and it was assumed that  the new defect interacts with four 
nearest defects). The qualitative nature of  the distribution in this case also remained as previously with small quantitative 
changes. 

Up to now, dynamic effects were not  taken into account, i.e., it was assumed that after the appearance of  an 
additional defect in the specimen an equilibrium static stress distribution corresponding to the new configuration of  defects 
is established immediately.  However, in reality, when a fiber suddenly ruptures, the dynamic stress concentration near a 
defect considerably exceeds the static concentration [4]. For  this reason, it is natural to a t tempt  to take into account 
dynamic overloading in studying the strength of a specimen. 
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In order to solve exactly the dynamic problem of the sudden appearance of a new defect, it is necessary to take 
into account diffraction of elastic waves, caused by the appearance of  the new defect, by defects in the starting system. 
However, this problem is very complicated, and it has not yet been solved. For this reason, in the, calculations, the true 
dynamic stress field was replaced by a superposition of the dynamic field of  an isolated defect (see [4]) with the static 
field of  the initial system of defects. This superposition is an exact solution to the problem at each point prior to the 
arrival at that point of  elastic waves reflected from the initial defects. When the problem is stated in this manner, it is 
possible to include the entire infinite grid in the starting system of defects. 

Following [5], we will adopt the following criterion for the rupturing of a fiber: 

t 

t ! ~ ( r )  & - ~<., [ ,  "," 

t--re 

where o ,  is the rupture strength of a fiber; t ,  is some characteristic averaging time. It is not useful to state the conditions 
for strength according to the maximum stresses, since the stresses change very rapidly with time. Small changes in the 
model, for example taking into account viscosity, can considerably change the maximum values of  the stresses and thereby 
cast doubt on the conclusions obtained. Finally, it is not reasonable to make the behavior of the mechanical system depend 
on conditions occurring during the zeroth time interval. For this reason, in stating the conditions for strength, we average 
with respect to time. 

Figure 2 shows the results of calculations for p = 8 and L = 8. The strength criteria were averaged according to 
two times for passage of shear waves in the binding agent between two neighboring fibers. Since diffraction of elastic 
waves on initial defects is not taken into account, these results are very approximate, but, apparently, they nevertheless 
give a qualitative description of the phenomenon. Taking the dynamic overloads into account leads, as expected, to a 
considerable decrease in the strength of a specimen. The curve on the right side of  Fig. 2, which corresponds to higher 
strength values, corresponds to the appearance of  an additional rupture in a fiber that has already been ruptured. 

LITERATURE CITED 

1. A.M. Mikhailov, "Failure in unidirectional fiber glass," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5 (1973). 
2. I .M. Gel'land and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Fizmatgiz, Moscow 

(1958). 
3. I .S .  Gradshtein and I. M. Ryzhik, Tables of  Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow 

(1963). 
4. A.M. Mikhailov, "Dynamic stress concentration near a defect in fiber glass," in: Dynamics of  a Continuous Medium, 

Issues 19-20 [in Russian], Izd. Institute Gidrodinam., Sibirsk. Otd. Akad. Nauk SSSR, Novosibirsk (1974). 
5. A . A .  Ermak and A. M. Mikhailov, "Dynamic stress concentration in fiber glass," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 

(1978). 

825 


